Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.393
Filter
1.
J Physiol Pharmacol ; 75(2): 137-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736261

ABSTRACT

In this study, we examined the changes in the fibrinolytic system in a rabbit model of two acute pulmonary thromboembolisms (PTE). Fourteen healthy adult New Zealand white rabbits were divided into three groups: the single PTE group (five rabbits), the double PTE group (five rabbits), and the control group (four rabbits). A rabbit model of acute pulmonary embolism was established, and immunohistochemistry and polymerase chain reaction (PCR) were performed on tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1) in plasma, and pulmonary embolism tissue. Plasma results: 1) t-PA levels: one hour following the initial modeling, the levels of t-PA in the modeling groups were significantly lower than those in the control group (P<0.05). In addition, the t-PA levels in the double PTE group were found to be lower after the modeling, as compared to the pre-modeling period (P<0.05). One hour after the second modeling, the double PTE group had lower t-PA levels compared to the control group (P<0.05). However, t-PA rebounded two hours after modeling in the double PTE group. One week after the second modeling, the double PTE group had higher t-PA levels compared to the other two groups (P<0.05). 2) PAI-1 results: one hour after the initial modeling, PAI-1 levels in the two modeling groups were lower compared to the pre-modeling period and control groups (P<0.05). Two hours following modeling, PAI-1 levels in both modeling groups were lower compared to the control group (P<0.05). PAI-1 levels were lower in the double PTE group one and two hours after the second modeling compared to the other two groups and pre-modeling period (P<0.05). 3) The immunohistochemistry results: the expression of PAI-1 decreased in the two modeling groups, while t-PA expression increased compared to the control group. 4) PCR results: t-PA mRNA expression did not differ among the three groups. The PAI-1 mRNA expression was lower in the two PTE groups compared to the control group. We conclude that in the early stages of PTE, the local fibrinolytic activity of the thrombus is increased, which is favorable for thrombolysis. However, as the thrombus persists, the activity of the fibrinolytic system is inhibited, contributing to the development of chronic thromboembolic pulmonary hypertension.


Subject(s)
Disease Models, Animal , Fibrinolysis , Plasminogen Activator Inhibitor 1 , Pulmonary Embolism , Tissue Plasminogen Activator , Animals , Rabbits , Pulmonary Embolism/metabolism , Pulmonary Embolism/blood , Pulmonary Embolism/pathology , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/genetics , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lung/metabolism
2.
Stroke ; 55(3): 747-756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38288607

ABSTRACT

BACKGROUND: Intravenous injection of alteplase, a recombinant tPA (tissue-type plasminogen activator) as a thrombolytic agent has revolutionized ischemic stroke management. However, tPA is a more complex enzyme than expected, being for instance able to promote thrombolysis, but at the same time, also able to influence neuronal survival and to affect the integrity of the blood-brain barrier. Accordingly, the respective impact of endogenous tPA expressed/present in the brain parenchyma versus in the circulation during stroke remains debated. METHODS: To address this issue, we used mice with constitutive deletion of tPA (tPANull [tPA-deficient mice]) or conditional deletion of endothelial tPA (VECad [vascular endothelial-Cadherin-Cre-recombinase]-Cre∆tPA). We also developed parabioses between tPANull and wild-type mice (tPAWT), anticipating that a tPAWT donor would restore levels of tPA to normal ones, in the circulation but not in the brain parenchyma of a tPANull recipient. Stroke outcomes were investigated by magnetic resonance imaging in a thrombo-embolic or a thrombotic stroke model, induced by local thrombin injection or FeCl3 application on the endothelium, respectively. RESULTS: First, our data show that endothelial tPA, released into the circulation after stroke onset, plays an overall beneficial role following thrombo-embolic stroke. Accordingly, after 24 hours, tPANull/tPANull parabionts displayed less spontaneous recanalization and reperfusion and larger infarcts compared with tPAWT/tPAWT littermates. However, when associated to tPAWT littermates, tPANull mice had similar perfusion deficits, but less severe brain infarcts. In the thrombotic stroke model, homo- and hetero-typic parabionts did not differ in the extent of brain damages and did not differentially recanalize and reperfuse. CONCLUSIONS: Together, our data reveal that during thromboembolic stroke, endogenous circulating tPA from endothelial cells sustains a spontaneous recanalization and reperfusion of the tissue, thus, limiting the extension of ischemic lesions. In this context, the impact of endogenous parenchymal tPA is limited.


Subject(s)
Stroke , Thrombotic Stroke , Animals , Mice , Disease Models, Animal , Endothelial Cells , Endothelium , Mice, Knockout , Stroke/diagnostic imaging , Stroke/pathology , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism
3.
Neurol Res ; 46(2): 157-164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37853768

ABSTRACT

OBJECTIVES: Inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 can cause brain injury, slow recovery, and adverse effects (ADEs) in ischemic stroke (IS) patients treated with recombinant tissue plasminogen activator (rtPA). We explored the relationship between selected polymorphisms within TNF-α, IL-1ß and IL-6 genes, and post-IS outcome and ADEs in patients treated with rtPA. METHODS: One hundred and sixty-six patients with IS treated with rtPA were included in this study. The modified Rankin Scale (mRS) was used to assess functional recovery 3 months after IS likewise thrombolytic therapy efficacy. Patients were classified into groups with favorable (0-1) or poor recovery based on their mRS score at the ninetieth day post-IS. During hospitalization, ADEs following rtPA were monitored. TNF-α-308 G/A (rs1800629), IL-1ß-511 G/A (rs16944), and IL-6-174 G/C (rs1800795) polymorphisms were genotyped using Real-Time PCR. SPSS software version 22.0 was used for statistical analyses. RESULTS: Patients with the TNF-α-308 G/A GG genotype had a higher mean NIHSS value at admission (12.75 ± 5.176) than those carrying A-allele (10.56 ± 3.979;p = 0.016). Individuals with the CC genotype of the IL-6-174 G/C polymorphism had significantly lower NIHSS scores (8.79 ± 5.053) than those with G-allele (12.06 ± 6.562) 24 hours after rtPA (p = 0.050). Patients with the GG genotype of the IL-6-174 G/C polymorphism had a significantly poorer outcome (p = 0.024; OR = 2.339; 95%CI 1.121-4.880), while patients who were G-allele carriers of the Il-6-174 G/C polymorphism and had the AA genotype of the IL-1ß-511 G/A polymorphism were statistically significantly more likely to experience hemorrhagic transformation (p = 0.046; OR = 2.7273; 95%CI 1.0414-7.1426). CONCLUSION: GG genotype of the IL-6-174 G/C polymorphism is associated with poor recovery after IS treated with rtPA therapy.


Subject(s)
Ischemic Stroke , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Interleukin-6/genetics , Interleukin-1beta/genetics , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/therapeutic use , Genetic Predisposition to Disease , Gene Frequency , Polymorphism, Single Nucleotide , Genotype , Thrombolytic Therapy , Case-Control Studies
4.
J Thromb Haemost ; 22(4): 936-950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38103737

ABSTRACT

BACKGROUND: Thrombolytic recombinant tissue plasminogen activator (r-tPA) treatment is the only pharmacologic intervention available in the ischemic stroke acute phase. This treatment is associated with an increased risk of intracerebral hemorrhages, known as hemorrhagic transformations (HTs), which worsen the patient's prognosis. OBJECTIVES: To investigate the association between genetically determined natural hemostatic factors' levels and increased risk of HT after r-tPA treatment. METHODS: Using data from genome-wide association studies on the risk of HT after r-tPA treatment and data on 7 hemostatic factors (factor [F]VII, FVIII, von Willebrand factor [VWF], FXI, fibrinogen, plasminogen activator inhibitor-1, and tissue plasminogen activator), we performed local and global genetic correlation estimation multitrait analyses and colocalization and 2-sample Mendelian randomization analyses between hemostatic factors and HT. RESULTS: Local correlations identified a genomic region on chromosome 16 with shared covariance: fibrinogen-HT, P = 2.45 × 10-11. Multitrait analysis between fibrinogen-HT revealed 3 loci that simultaneously regulate circulating levels of fibrinogen and risk of HT: rs56026866 (PLXND1), P = 8.80 × 10-10; rs1421067 (CHD9), P = 1.81 × 10-14; and rs34780449, near ROBO1 gene, P = 1.64 × 10-8. Multitrait analysis between VWF-HT showed a novel common association regulating VWF and risk of HT after r-tPA at rs10942300 (ZNF366), P = 1.81 × 10-14. Mendelian randomization analysis did not find significant causal associations, although a nominal association was observed for FXI-HT (inverse-variance weighted estimate [SE], 0.07 [-0.29 to 0.00]; odds ratio, 0.87; 95% CI, 0.75-1.00; raw P = .05). CONCLUSION: We identified 4 shared loci between hemostatic factors and HT after r-tPA treatment, suggesting common regulatory mechanisms between fibrinogen and VWF levels and HT. Further research to determine a possible mediating effect of fibrinogen on HT risk is needed.


Subject(s)
Hemostatics , Stroke , Humans , Tissue Plasminogen Activator/adverse effects , Tissue Plasminogen Activator/genetics , von Willebrand Factor/analysis , Genome-Wide Association Study , Nerve Tissue Proteins , Receptors, Immunologic/therapeutic use , Stroke/drug therapy , Stroke/genetics , Fibrinogen/analysis , Hemostatics/adverse effects , Risk Factors
5.
J Neurogenet ; 37(4): 124-130, 2023.
Article in English | MEDLINE | ID: mdl-38109176

ABSTRACT

Autosomal recessive cerebellar ataxias (ARCA) constitute a highly heterogeneous group of progressive neurodegenerative disorders that typically occur prior to adulthood. Despite some clinical resemblance between these disorders, different genes are involved. We report in this study four Tunisian patients belonging to the same large consanguineous family, sharing autosomal recessive cerebellar ataxia phenotypes but with clinical, biological, electrophysiological, and radiological differences leading to the diagnosis of two distinct ARCA caused by two distinct gene defects. Two of our patients presented ataxia with the vitamin E deficiency (AVED) phenotype, and the other two presented ataxia with oculo-motor apraxia 2 (AOA2). Genetic testing confirmed the clinical diagnosis by the detection of a frameshift c.744delA pathogenic variant in the TTPA gene, which is the most frequent in Tunisia, and a new variant c.1075dupT in the SETX gene. In Tunisia, data suggest that genetic disorders are common. The combined effects of the founder effect and inbreeding, added to genetic drift, may increase the frequency of detrimental rare disorders. The genetic heterogeneity observed in this family highlights the difficulty of genetic counseling in an inbred population. The examination and genetic testing of all affected patients, not just the index patient, is essential to not miss a treatable ataxia such as AVED, as in the case of this family.


Subject(s)
Cerebellar Ataxia , Tissue Plasminogen Activator , Vitamin E Deficiency , Humans , Ataxia/genetics , Cerebellar Ataxia/genetics , Cerebellar Ataxia/epidemiology , Consanguinity , DNA Helicases/genetics , Genetic Heterogeneity , Multifunctional Enzymes/genetics , Mutation , RNA Helicases/genetics , Tissue Plasminogen Activator/genetics
6.
J Assoc Res Otolaryngol ; 24(2): 159-170, 2023 04.
Article in English | MEDLINE | ID: mdl-36810718

ABSTRACT

The significance of plasminogen activation during the tympanic membrane (TM) healing is known mainly from studies performed on knock-out mice. In the previous study, we reported activation of genes coding proteins of plasminogen activation and inhibition system in rat's TM perforation healing. The aim of the present study was the evaluation of protein products expressed by these genes and their tissue distribution using Western blotting and immunofluorescent method, respectively, during 10-day observation period after injury. Otomicroscopical and histological evaluation were employed to assess the healing process. The expression of urokinase plasminogen activator (uPA) and its receptor (uPAR) were significantly upregulated in the proliferation phase, with subsequent gradual attenuation during remodeling phase of healing process, when keratinocyte migration was weakening. The expression of plasminogen activator inhibitor type 1 (PAI-1) also showed the highest levels during the proliferation phase. The increase of tissue plasminogen activator (tPA) expression was observed during the whole observation period, with the highest activity during the remodeling phase. Immunofluorescence of these proteins was present mainly in migrating epithelium. Our study found that plasminogen activation (uPA, uPAR, tPA) and inhibitory (PAI-1) molecules form a well-structured regulatory system of the epithelial migration that is critical to the healing of TM after its perforation.


Subject(s)
Tissue Plasminogen Activator , Tympanic Membrane Perforation , Mice , Rats , Animals , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Plasminogen
7.
Cell Death Dis ; 14(1): 34, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36650132

ABSTRACT

The discovery of the neuronal expression of the serine protease tissue-type plasminogen activator (tPA) has opened new avenues of research, with important implications in the physiopathology of the central nervous system. For example, the interaction of tPA with synaptic receptors (NMDAR, LRP1, Annexin II, and EGFR) and its role in the maturation of BDNF have been reported to influence synaptic plasticity and neuronal survival. However, the mechanisms regulating the neuronal trafficking of tPA are unknown. Here, using high-resolution live cell imaging and a panel of innovative genetic approaches, we first unmasked the dynamic characteristics of the dendritic and axonal trafficking of tPA-containing vesicles under different paradigms of neuronal activation or inhibition. We then report a constitutive exocytosis of tPA- and VAMP2-positive vesicles, dramatically increased in conditions of neuronal activation, with a pattern which was mainly dendritic and thus post-synaptic. We also observed that the synaptic release of tPA led to an increase of the exocytosis of VGlut1 positive vesicles containing glutamate. Finally, we described alterations of the trafficking and exocytosis of neuronal tPA in cultured cortical neurons prepared from tau-22 transgenic mice (a preclinical model of Alzheimer's disease (AD)). Altogether, these data provide new insights about the neuronal trafficking of tPA, contributing to a better knowledge of the tPA-dependent brain functions and dysfunctions.


Subject(s)
Glutamic Acid , Tissue Plasminogen Activator , Mice , Animals , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Glutamic Acid/metabolism , Neurons/metabolism , Mice, Transgenic
8.
FASEB J ; 36(10): e22564, 2022 10.
Article in English | MEDLINE | ID: mdl-36165219

ABSTRACT

The outcome of ischemic stroke can be improved by further refinements of thrombolysis and reperfusion strategies. Factor VII activating protease (FSAP) is a circulating serine protease that could be important in this context. Its levels are raised in patients as well as mice after stroke and a single nucleotide polymorphism (SNP) in the coding sequence, which results in an inactive enzyme, is linked to an increased risk of stroke. In vitro, FSAP cleaves fibrinogen to promote fibrinolysis, activates protease-activated receptors, and decreases the cellular cytotoxicity of histones. Based on these facts, we hypothesized that FSAP can be used as a treatment for ischemic stroke. A combination of tissue plasminogen activator (tPA), a thrombolytic drug, and recombinant serine protease domain of FSAP (FSAP-SPD) improved regional cerebral perfusion and neurological outcome and reduced infarct size in a mouse model of thromboembolic stroke. FSAP-SPD also improved stroke outcomes and diminished the negative consequences of co-treatment with tPA in the transient middle cerebral artery occlusion model of stroke without altering cerebral perfusion. The inactive MI-isoform of FSAP had no impact in either model. FSAP enhanced the lysis of blood clots in vitro, but in the tail transection model of hemostasis, FSAP-SPD treatment provoked a faster clotting time indicating that it also has pro-coagulant actions. Thus, apart from enhancing thrombolysis, FSAP has multiple effects on stroke progression and represents a promising novel therapeutic strategy in the treatment of ischemic stroke.


Subject(s)
Coagulants , Ischemic Stroke , Stroke , Animals , Disease Models, Animal , Factor VII , Fibrinogen , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Histones , Mice , Peptide Hydrolases , Receptors, Proteinase-Activated , Serine Endopeptidases/genetics , Stroke/drug therapy , Tissue Plasminogen Activator/genetics
9.
Pediatr Int ; 64(1): e15099, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35522716

ABSTRACT

BACKGROUND: Dysregulation of the coagulation fibrinolysis system in resident glomerular cells is associated with the pathogenesis of lupus nephritis. However, the role of plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) in resident glomerular cells remains undetermined. METHODS: We examined the expression of PAI-1 and tPA mRNA in cultured normal human glomerular endothelial cells (GECs) treated with serum from patients with systemic lupus erythematosus (SLE) using quantitative reverse transcription polymerase chain reactions. We determined the relationship between PAI-1/tPA mRNA expression and several clinical/laboratory parameters. Serum from 16 patients (nine patients with new-onset SLE and seven patients with stable SLE) was used in the study. RESULTS: Plasminogen activator inhibitor-1 and tPA mRNA expression was significantly higher in GECs treated with serum of patients with new-onset SLE than other groups. The PAI-1 and tPA mRNA levels were also significantly correlated in GECs treated with serum from patients with SLE. Interestingly, both PAI-1 and tPA mRNA levels in GECs were inversely correlated with serum C4 level and positively correlated with SLE disease activity. CONCLUSIONS: These results suggest that serum from patients with SLE may activate the fibrinolysis system in glomerulus, which may be involved in the pathogenesis of lupus nephritis.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fibrinolysis , Humans , Lupus Erythematosus, Systemic/complications , Lupus Nephritis/complications , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , RNA, Messenger/genetics , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism
10.
J Thromb Haemost ; 20(6): 1331-1349, 2022 06.
Article in English | MEDLINE | ID: mdl-35285134

ABSTRACT

BACKGROUND: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. OBJECTIVES: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. METHODS: Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10-9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). RESULTS: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. CONCLUSIONS: The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits.


Subject(s)
Cardiovascular Diseases , Hemostatics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Factor XI/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Hemostasis/genetics , Humans , Phenotype , Polymorphism, Single Nucleotide , Tissue Plasminogen Activator/genetics
11.
Plant J ; 110(3): 673-687, 2022 05.
Article in English | MEDLINE | ID: mdl-35106849

ABSTRACT

The transcription factor Ghd2 increases rice yield potential under normal conditions and accelerates leaf senescence under drought stress. However, its mechanism on the regulation of leaf senescence under drought stress remains unclear. In the present study, to unveil the mechanism, one target of Ghd2, the Rubisco activase gene RCA, was identified through the combined analysis of Ghd2-CRISPR transcriptome data and Ghd2-overexpression microarray data. Ghd2 binds to the 'CACA' motif in the RCA promoter by its CCT domain and upregulates RCA expression. RCA has alternative transcripts, RCAS and RCAL, which are predominantly expressed under normal conditions and drought stress, respectively. Similar to Ghd2-overexpressing plants, RCAL-overexpressing plants were more sensitive to drought stress than the wild-type. However, the plants overexpressing RCAS showed a weak drought-sensitive phenotype. Moreover, RCAL knockdown and knockout plants did not show yield loss under normal conditions, but exhibited enhanced drought tolerance and delayed leaf senescence. The chlorophyll content, the free amino acid content and the expression of senescence-related genes in the RCAL mutant were lower than those in the wild-type plants under drought stress. In summary, Ghd2 induces leaf senescence by upregulating RCAL expression under drought stress, and the RCAL mutant has important values in breeding drought-tolerant varieties.


Subject(s)
Oryza , Droughts , Gene Expression Regulation, Plant/genetics , Oryza/metabolism , Plant Breeding , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Mol Psychiatry ; 27(4): 2197-2205, 2022 04.
Article in English | MEDLINE | ID: mdl-35145231

ABSTRACT

Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.


Subject(s)
Central Amygdaloid Nucleus , Protein Kinase C-delta/metabolism , Animals , Anxiety , Anxiety Disorders , Central Amygdaloid Nucleus/metabolism , GABAergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism
13.
Sci Rep ; 12(1): 400, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013379

ABSTRACT

Fibroblast growth factor-21 (FGF-21) performs a wide range of biological functions in organisms. Here, we report for the first time that FGF-21 suppresses thrombus formation with no notable risk of bleeding. Prophylactic and therapeutic administration of FGF-21 significantly improved the degree of vascular stenosis and reduced the thrombus area, volume and burden. We determined the antithrombotic mechanism of FGF-21, demonstrating that FGF-21 exhibits an anticoagulant effect by inhibiting the expression and activity of factor VII (FVII). FGF-21 exerts an antiplatelet effect by inhibiting platelet activation. FGF-21 enhances fibrinolysis by promoting tissue plasminogen activator (tPA) expression and activation, while inhibiting plasminogen activator inhibitor 1 (PAI-1) expression and activation. We further found that FGF-21 mediated the expression and activation of tPA and PAI-1 by regulating the ERK1/2 and TGF-ß/Smad2 pathways, respectively. In addition, we found that FGF-21 inhibits the expression of inflammatory factors in thrombosis by regulating the NF-κB pathway.


Subject(s)
Blood Coagulation/drug effects , Fibrinolytic Agents/pharmacology , Fibroblast Growth Factors/pharmacology , Thrombosis/prevention & control , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Line , Cytokines/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Factor VII/genetics , Factor VII/metabolism , Fibrinolysis/drug effects , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Male , Mice, Inbred ICR , NF-kappa B/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Platelet Activation/drug effects , Rabbits , Signal Transduction , Smad2 Protein/metabolism , Thrombosis/blood , Thrombosis/genetics , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Transforming Growth Factor beta/metabolism
14.
PLoS One ; 17(1): e0261567, 2022.
Article in English | MEDLINE | ID: mdl-34982784

ABSTRACT

Deep vein thrombosis is a major source of morbidity and mortality worldwide. For acute proximal deep vein thrombosis, catheter-directed thrombolytic therapy is an accepted method for vessel recanalization. Thrombolytic therapy is not without risk, including the potential for hemorrhagic bleeding that increases with lytic dose. Histotripsy is a focused ultrasound therapy that generates bubble clouds spontaneously in tissue at depth. The mechanical activity of histotripsy increases the efficacy of thrombolytic therapy at doses consistent with current pharmacomechanical treatments for venous thrombosis. The objective of this study was to determine the influence of lytic dose on histotripsy-enhanced fibrinolysis. Human whole blood clots formed in vitro were exposed to histotripsy and a thrombolytic agent (recombinant tissue plasminogen activator, rt-PA) in a venous flow model perfused with plasma. Lytic was administered into the clot via an infusion catheter at concentrations ranging from 0 (control) to 4.54 µg/mL (a common clinical dose for catheter-directed thrombolysis). Following treatment, perfusate samples were assayed for markers of fibrinolysis, hemolysis, and intact red blood cells and platelets. Fibrinolysis was equivalent between the common clinical dose of rt-PA (4.54 µg/mL) and rt-PA at a reduction to one-twentieth of the common clinical dose (0.23 µg/mL) when combined with histotripsy. Minimal changes were observed in hemolysis for treatment arms with or without histotripsy, potentially due to clot damage from insertion of the infusion catheter. Likewise, histotripsy did not increase the concentration of red blood cells or platelets in the perfusate following treatment compared to rt-PA alone. At the highest lytic dose, a refined histotripsy exposure scheme was implemented to cover larger areas of the clot. The updated exposure scheme improved clot mass loss and fibrinolysis relative to administration of lytic alone. Overall, the data collected in this study indicate the rt-PA dose can be reduced by more than a factor of ten and still promote fibrinolysis when combined with histotripsy.


Subject(s)
Fibrinolysis/drug effects , Fibrinolytic Agents/pharmacology , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/pharmacology , Blood Platelets/chemistry , Catheters , Erythrocytes/chemistry , Fibrinolytic Agents/therapeutic use , Hemoglobins/chemistry , Humans , In Vitro Techniques , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/therapeutic use , Venous Thrombosis/drug therapy
15.
World J Microbiol Biotechnol ; 38(2): 29, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989886

ABSTRACT

Structural engineering of the recombinant thrombolytic drug, Reteplase, and its cost-effective production are important goals in the pharmaceutical industry. In this study, a single-point mutant of the protein was rationally designed and evaluated in terms of physicochemical characteristics, enzymatic activity, as well as large-scale production settings. An accurate homology model of Reteplase was used as the input to appropriate tools to identify the aggregation-prone sites, while considering the structural stability. Selected variants underwent extensive molecular dynamic simulations (total 540 ns) to assess their solvation profile and their thermal stability. The Reteplase-fibrin interaction was investigated by docking. The best variant was expressed in E. coli, and Box-Behnken design was used through response surface methodology to optimize its expression conditions. M72R mutant demonstrated appropriate stability, enhanced enzymatic activity (p < 0.05), and strengthened binding to fibrin, compared to the wild type. The optimal conditions for the variant's production in a bioreactor was shown to be 37 ºC, induction with 0.5 mM IPTG, for 2 h of incubation. Under these conditions, the final amount of the produced enzyme was increased by about 23 mg/L compared to the wild type, with an increase in the enzymatic activity by about 2 IU/mL. This study thus offered a new Reteplase variant with nearly all favorable properties, except solubility. The impact of temperature and incubation time on its large-scale production were underlined as well.


Subject(s)
Metabolic Engineering , Recombinant Proteins/biosynthesis , Tissue Plasminogen Activator/biosynthesis , Bioreactors , Biotechnology , Escherichia coli/genetics , Escherichia coli/metabolism , Fibrinolytic Agents/metabolism , Gene Expression Regulation, Bacterial , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/pharmacology
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(11): 1649-1656, 2021 Nov 20.
Article in Chinese | MEDLINE | ID: mdl-34916190

ABSTRACT

OBJECTIVE: To obtain GH/tPA double transgenic mice, analyze the expression level of tissue plasminogen activator (tPA) in the mammary glands and observe the growth and development of the transgenic mice. METHODS: We obtained the offspring mice of 2 tPA single transgenic mice (P03 and P05) mated with a female nontransgenic mouse by microinjection of linearized GH plasmid into the fertilized eggs and embryo transfer. PCR was used to detect the gene integration. The expression levels of tPA in single gene and double gene transgenic mice were compared using ELISA and Western blotting. We assessed the effects of GH gene transduction on the growth and development of the transgenic mice by observing body weight changes of the mice at each developmental stage. RESULTS: A total of 286 fertilized eggs were collected from P03 mice, and after embryo transfer, 77 offspring mice were obtained, including 16 tPA single transgenic mice (7 male, 9 female) and 13 GH/tPA double transgenic mice (8 male, 5 female) as confirmed by PCR. The integration rate of the double genes was 16.9%. A total of 175 fertilized eggs were collected from P05 mice, and 34 offspring mice were obtained including 12 tPA single transgenic mice (5 male, 7 female) and 7 GH/tPA double transgenic mice (3 male, 4 female), in which the integration rate of the double genes was 20.6%. The highest expression level of tPA in the mammary gland was significantly higher in double than in single transgenic mice (674 µg/mL vs 82.5 µg/mL, P < 0.05). In the whole growth cycle of the mice, no significant difference in weight gain was observed in the single or double transgenic mice as compared with the na?ve mice (P>0.05). CONCLUSION: We successfully prepared GH/tPA double transgenic mice, in which GH gene transduction significantly increases the expression level of target gene tPA without affecting the growth and development of the transgenic mice. This success suggests a promising approach to preparing transgenic animals for producing pharmaceutical proteins and the breeding of the transgenic animals.


Subject(s)
Growth Hormone/genetics , Tissue Plasminogen Activator , Animals , Female , Gene Expression , Male , Mice , Mice, Transgenic , Tissue Plasminogen Activator/genetics
17.
PLoS One ; 16(11): e0260796, 2021.
Article in English | MEDLINE | ID: mdl-34847186

ABSTRACT

Thrombolytic and fibrinolytic therapies are effective treatments to dissolve blood clots in stroke therapy. Thrombolytic drugs activate plasminogen to its cleaved form plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The FDA-approved human tissue plasminogen activator Reteplase (rPA) is a non-glycosylated protein produced in E. coli. rPA is a deletion mutant of the wild-type Alteplase that benefits from an extended plasma half-life, reduced fibrin specificity and the ability to better penetrate into blood clots. Different methods have been proposed to improve the production of rPA. Here we show for the first time the transient expression in Nicotiana benthamiana of rPA fused to the immunoglobulin fragment crystallizable (Fc) domain on an IgG1, a strategy commonly used to improve the stability of therapeutic proteins. Despite our success on the expression and purification of dimeric rPA-Fc fusions, protein instability results in high amounts of Fc-derived degradation products. We hypothesize that the "Y"- shape of dimeric Fc fusions cause steric hindrance between protein domains and leads to physical instability. Indeed, mutations of critical residues in the Fc dimerization interface allowed the expression of fully stable rPA monomeric Fc-fusions. The ability of rPA-Fc to convert plasminogen into plasmin was demonstrated by plasminogen zymography and clot lysis assay shows that rPA-Fc is able to dissolve blood clots ex vivo. Finally, we addressed concerns with the plant-specific glycosylation by modulating rPA-Fc glycosylation towards serum-like structures including α2,6-sialylated and α1,6-core fucosylated N-glycans completely devoid of plant core fucose and xylose residues.


Subject(s)
Fibrinolysis/drug effects , Fibrinolytic Agents , Immunoglobulin Fc Fragments , Nicotiana/genetics , Recombinant Fusion Proteins , Tissue Plasminogen Activator , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Tissue Plasminogen Activator/biosynthesis , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/pharmacology , Nicotiana/metabolism
18.
PLoS One ; 16(7): e0254253, 2021.
Article in English | MEDLINE | ID: mdl-34234378

ABSTRACT

BACKGROUND: Intravenous thrombolysis using recombinant tissue plasminogen activator remains the mainstay treatment of acute ischemic stroke (AIS), although endovascular treatment is becoming standard of care in case of large vessel occlusions (LVO). To quantify the thrombus burden in LVO, a semiquantitative CT angiography (CTA) grading system, the clot burden score (CBS) can be used. Here we aimed to study the association between CBS and various hemostasis parameters, and to evaluate which parameters are major determinants of thrombolysis outcome. METHODS: In this single-centered prospective observational case-control study, 200 anterior circulation AIS patients receiving intravenous thrombolysis treatment without thrombectomy were enrolled: 100 AIS patients with LVO (CBS 0-9) and 100 age- and sex-matched AIS patients without LVO (CBS 10). Fibrinogen, α2-plasmin inhibitor, plasminogen, factor XIII and D-dimer were assessed from blood samples taken before and 24 h after thrombolysis, and FXIII-A Val34Leu was genotyped. CBS was calculated using admission CTA. Short-term outcomes were defined based on the change in NIHSS by day 7, long-term outcomes were assessed according to the modified Rankin scale at 3 months post-event. RESULTS: Poor outcomes were significantly more frequent in the CBS 0-9 group. Plasminogen activity on admission was significantly higher in the CBS 0-9 group. In a univariate analysis, significant protective effect of the Leu34 allele against developing larger clots (CBS 0-9) could be demonstrated (OR:0.519; 95%CI:0.298-0.922, p = 0.0227). Multivariate regression analysis revealed that CBS is an independent predictor of short- and long-term functional outcomes, while such effect of the studied hemostasis parameters could not be demonstrated. CONCLUSIONS: CBS was found to be a significant independent predictor of thrombolysis outcomes. FXIII-A Leu34 carrier status was associated with smaller thrombus burden, which is consistent with the in vitro described whole blood clot mass reducing effects of the allele, but the polymorphism had no effect on thrombolysis outcomes.


Subject(s)
Factor XIII/genetics , Fibrinolytic Agents/administration & dosage , Ischemic Stroke/drug therapy , Ischemic Stroke/genetics , Polymorphism, Genetic/genetics , Thrombosis/drug therapy , Administration, Intravenous , Aged , Case-Control Studies , Female , Fibrinogen/genetics , Fibrinolysis/drug effects , Fibrinolysis/genetics , Humans , Male , Middle Aged , Prospective Studies , Thrombolytic Therapy/methods , Thrombosis/genetics , Tissue Plasminogen Activator/genetics , Treatment Outcome
19.
Mar Drugs ; 19(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071669

ABSTRACT

Tetraselmis subcordiformis, a unicellular marine green alga, is used widely in aquaculture as an initial feeding for fish, bivalve mollusks, penaeid shrimp larvae, and rotifers because of its rich content of amino acids and fatty acids. A stable nuclear transformation system using the herbicide phosphinothricin (PPT) as a selective reagent was established previously. In this research, the recombinant expression in T. subcordiformis was investigated by particle bombardment with the rt-PA gene that encodes the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction treatment. Transgenic algal strains were selected by their resistance to PPT, and expression of rt-PA was validated by PCR, Southern blotting, and Western blotting, and bioactivity of rt-PA was confirmed by the fibrin agarose plate assay for bioactivity. The results showed that rt-PA was integrated into the genome of T. subcordiformis, and the expression product was bioactive, indicating proper post-transcriptional modification of rt-PA in T. subcordiformis. This report contributes to efforts that take advantage of marine microalgae as cell factories to prepare recombinant drugs and in establishing a characteristic pathway of oral administration in aquaculture.


Subject(s)
Chlorophyta/metabolism , Fibrinolytic Agents/metabolism , Microalgae/metabolism , Tissue Plasminogen Activator/biosynthesis , Chlorophyta/genetics , Industrial Microbiology , Microalgae/genetics , Plasminogen/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/genetics
20.
J Tradit Chin Med ; 41(2): 262-269, 2021 04.
Article in English | MEDLINE | ID: mdl-33825406

ABSTRACT

OBJECTIVE: To evaluate the protective efficacy of Sanqi (Radix Notoginseng) on cerebral hemorrhage in a rat model of traumatic brain injury (TBI) by investigating plasminogen activator inhibitor-1 (PAI-1), tissue-type plasminogen activator (t-PA), nuclear factor-κB (NF-κB, p-p65), nitric oxide (NO), endothelin (ET), cluster differentiation (CD61CD62), and coagulation. METHODS: The free-fall method was used to create a rat model of TBI. Forty-eight rats were randomly divided into six groups: the blank group, sham group, model group, low-dose Sanqi (Radix Notoginseng) group, middle-dose Sanqi (Radix Notoginseng) group, and high-dose Sanqi (Radix Notoginseng) group. At 24 h after the model was created, we investigated brain MRI, brain tissue morphology using HE staining, flow cytometry, and immunohistochemical changes. RESULTS: Cerebral hemorrhage was aggravated in TBI rats (observed in brain specimens, brain MRI, and brain tissue HE). Cerebral immunohistochemistry results demonstrated that the expression of t-PA, PAI-1 and p-p65 increased significantly in TBI rats, while t-PA/PAI-1 had a significant decrease. In addition, CD61CD62, D2D, and ET were significantly increased in TBI rats, and PT and APTT were significantly prolonged; in contrast, NO was significantly decreased. Sanqi (Radix Notoginseng) decreased cerebral hemorrhage in TBI rats (observed in brain MRI and brain tissue HE), and increased t-PA/PAI-1, CD61CD62 significantly. It also significantly decreased the expression of t-PA, PAI-1, and p-p65 in brain immunohistochemistry and significantly decreased PT, APTT, D2D, and ET. However, there were no differences in NO between the model group and the Sanqi (Radix Notoginseng) group. CONCLUSION: Sanqi (Radix Notoginseng) can decrease the expression of p-p65, increase t-PA/PAI-1, and stem traumatic intracranial hemorrhage in a TBI rat model.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Cerebral Hemorrhage/drug therapy , Drugs, Chinese Herbal/administration & dosage , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/metabolism , Humans , Integrin alphaV/genetics , Integrin alphaV/metabolism , Male , Panax notoginseng/chemistry , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Rats , Rats, Sprague-Dawley , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...